作者 黃 斯沛 | 發布日期 2016 年 01 月 01 日 12:03 | 分類 生物科技 , 科技教育 |
你能想像嗎?DNA 竟然也能像其他工業產品一樣大量生產!身為 Twist Bioscience 執行長以及共同創辦人,Emily Leproust 總是這樣提醒公司的同仁們:「我們是製造公司,我們製造 DNA。」
日益成熟的合成生物學
Twist Bioscience 倚賴在最近幾年發展的合成生物學,才能誇下海口。合成生物學是生物科學近年來發展出的新興分支,能夠和生物科學之外的其他科學結合,例如電腦科學、資訊科技、能源科技等,應用範圍也非常廣泛,在未來很有可能成為重要的發展方向。
在這項產業之中,生物就是他們的工廠。科學家們製造 DNA 做為組裝生命基因密碼的基本材料,進而創造出前所未見的生物樣貌。這些新的生物型態能夠為人所用,創造出極高的實用價值。舉例來說,能夠分泌出人類藥物的酵母菌,以及能夠產出飛機燃料的藻類,這些基因被調整過的物種早已被運用在醫療、食品、能源等不同產業,貢獻良多。
合成生物學的原理,和撰寫電腦程式有著異曲同工之妙,只不過使用的程式語言是由大自然所創造,人類只是學會了這種語言的編寫方式,加以修改重新設計,進而造成生物的改變。這種「語言」就是我們熟知的「基因」。組成基因所需要的材料叫做核鹼基(nucleobase),在 DNA 中共有 4 種,分別以英文字母 A(腺嘌呤)、T(胸腺嘧啶)、C(胞嘧啶)、G(鳥糞嘌呤) 表示。這 4 種核鹼基經過排列之後形成一連串的密碼,根據這些密碼,生物能夠各自擁有不同的組合型態及功能。以人類來說,這串密碼共有 32 億個字母那麼長,如果你改變某些字母的順序,就相當於改變了該生物內的系統指令。合成生物學家所做的事就是設計出新的小片段密碼,嵌入到酵母菌的 DNA 之中,讓酵母菌根據這串密碼開始製造我們所需要的物質,像是魚油的成分 omega-3 脂肪酸,或者原先只有玫瑰花能夠產生的芳香精油。
DNA 的組裝技術,也就是生物技術中的 DNA 合成與變更,往往需要由受過專業訓練的人員來操作,訓練的時間以及成本都使得這項新興產業的發展受到限制。有鑑於此,現今幾家新創公司積極的將 DNA 組裝推展到自動生產線上,藉由這項創新進而降低建構 DNA 鏈的成本,能夠同時降低價格,並且擴大應用的市場。未來 DNA 的組裝技術在市場上的競爭將以價格為主,總部在舊金山的 Twice Bioscience 將在 2016 年開始營運,在接下來的低價競爭中亦不會缺席。
勞力密集的 DNA 建構程序將可望由機器代勞
想要建構新的 DNA 鏈其實不難,事實上這項技術在全世界的相關研究室之中都非常常見,但通常得一步一步由研究者親手操作才行。Twist 公司的 Leproust 以勞力密集來形容做微生物學研究的情形:研究者整天忙著將液體從一個試管中移到另一個,日復一日,除了耗費精力之外,也使得研究進展緩慢。有鑑於此,Leproust 和其他共同創辦人發明了能夠自動執行這些建構步驟的機器。
這台機器的核心是一個表面布滿一萬個小凹槽的矽盤,結合了電腦晶片製造所使用的光刻技術,蝕刻出這些凹槽之後,這些 600 奈米寬的小凹槽就能分別用於建構出不同的 DNA 鏈。這台機器所做的事情,事實上和研究者在實驗室中所做的是完全相同的化學反應,只不過體積小了 100 倍,同時也節省了時間和人力。
Twist 所販售的並不是他們的機器,而是他們製造 DNA 的服務,這項服務能夠幫助正在尋找改良新基因的研究者或企業,使研究進行得更順利。Twist 已經在 2015 年開始為特定的客戶生產 DNA,在 2016 年,Twist 將會全面開始營運。Twist 提供業界中最划算的 DNA 組裝服務,將以每個核鹼基做為單位,以每個鹼基 0.1 美元計價。儘管如此,Leproust 依舊希望讓價格再更低一些,期待能夠達到每個鹼基只要 0.02 美元的低價。在這個價格之下,研究者們能夠進行一定規模的實驗而不會受到 DNA 成本的限制。
合成生物學領域將成為生技新創廝殺的戰場
另一家也是位於舊金山一帶的合成生物公司 Zymergen 則是提供了多樣的套裝服務,他們不僅以低價建構 DNA 小片段,還能幫你把成品插入微生物 DNA 中並監控結果。得到的結果可以提供許多有用的資訊,除了可以做為下一次 DNA 設計的參考,並且在同時使用多種微生物表現該 DNA 的情況下,客戶也能夠快速地找到用來表現此段基因的理想微生物種類。
像這樣的例子使得合成生物學產業這種「以生物為工廠」的特性引起了各方精采的討論,但並非人人都被大量生產 DNA 的展望所打動。同時身為生技顧問以及 BioEconomy 創投基金總裁的 Rob Carlson就提出質疑,他認為 DNA 的低價合成會導致希望以有經濟價值的微生物獲利的新創公司大量出現。製造測試大量的 DNA 並不難,但事實上,成本中高達 90% 是來自把技術從小小的試管擴大至商業規模的過程。舉例來說,一家公司想要利用酵母菌來生產藥物,他們必須要面對的將是好幾大槽內滿滿的微生物,其中管理及成本控管都不是簡單的任務。與此相比,最初建構 DNA 所省下的錢根本不值一提。因此,Carlson 對於大量生產 DNA 所能帶來的經濟效益究竟能有多大的影響力仍然存疑。
DNA Manufacturing Enters the Age of Mass Production
Synthetic-biology startups adopt technologies from the computer industry
Emily Leproust, CEO and cofounder of the buzzy biotech startup Twist Bioscience, is an industrialist on the nanoscale. “I remind everyone at Twist, we are a manufacturing company,” she says. “We manufacture DNA.”
Twist is part of the young industry of synthetic biology, in which living organisms are the product and a biology lab is the factory floor. By manufacturing strands of DNA—assembling the genetic code of life from its basic components—scientists are creating organisms the likes of which the world has never seen. And these new life forms can be decidedly useful: Biologists have produced yeast cells that excrete pharmaceuticals and algae that brew jet fuel.
This burgeoning business sector has been hampered by the labor-intensive nature of DNA assembly, a painstaking process requiring trained personnel. Now, nimble startups are competing to fashion automated DNA assembly lines that would make Henry Ford proud, using techniques copied from the fabs that make computer chips. As their innovations bring down the cost of constructing DNA strands, these entrepreneurs are aiming for a low price point, which they say will cause a market boom. Twist Bioscience, which will begin commercial operations at its San Francisco headquarters in 2016, is a leading contender in that race to the bottom.
Genetic material is composed of molecules called nucleobases; the four types of bases in DNA are identified by the letters A, C, G, and T. The order of these letters serves as a code that instructs an organism how to build its cells and carry on the functions of life. In human beings, this code is about 3.2 billion letters long, while the yeast used in baking and beer brewing has a code of about 12 million letters. If you tweak the order of the letters, you tweak the organism’s instructions. Synthetic biologists have written new snippets of code and inserted them into yeast DNA, causing the microbe to churn out, for example, the omega-3 fatty acids found in fish oil supplements or the aromatic oils normally produced by roses.
Constructing a strand of DNA isn’t complicated; in fact it’s a routine procedure performed in labs all over the world. But that procedure is typically carried out by hand, says Twist’s Leproust: “Microbiology is manual labor. You have a Ph.D. student moving liquid from one test tube to the next all day long.” So she and her cofounders invented a machine that automates the construction process.
The heart of the machine is a silicon plate pocked with 10,000 tiny wells, which are etched using the same photolithography techniques perfected by computer chip manufacturers. A different strand of DNA can be constructed in each 600-nanometerwide well. The machine does “the exact same chemistry” as a Ph.D. student would do, Leproust says, “only in a volume that’s 100 times smaller.”
Twist isn’t selling its machine but rather its DNA manufacturing services, which are aimed at researchers and startups seeking new genetic modifications that might prove useful. In 2015 the company began production runs for select customers; 2016 will see Twist’s full commercial launch. DNA assembly is priced on a cost-per-base model, and Leproust says her company’s 10-cents-per-base starting price is already the best in the industry. But she’s aiming for a 2-cent price point: “That’s the point at which researchers can significantly scale experiments and will no longer be limited by the cost of DNA,” she says. Today, customers typically order DNA strands of 300 to 1,800 bases in length, Leproust says.
Another synthetic-biology startup in the San Francisco area, Zymergen, offers customers a broader set of services. The company not only constructs DNA snippets on the cheap, it also inserts that DNA into microbes and monitors the outcome. Chief science officer Zach Serber explains that the results can inform the next round of DNA design, letting customers iterate quickly as they look for their ideal organism. “You cast a wide net,” Serber says, “and when you find a variation that improves the microbe’s performance, then you double down.”
Such setups have led to excited talk of a synthetic-biology industry based on “organism fabs.” But the promise of mass-produced DNA doesn’t impress Rob Carlson, a biotech consultant and managing director of the BioEconomy Capital venture fund. “I don’t understand the business model,” he says.
Carlson is skeptical that cheap DNA assembly will lead to a proliferation of startups with ideas for profitable microbes. “So you can make and test a whole bunch more DNA—but that’s not the hard part,” he argues. “Going from test tube to bench scale to commercial scale, that’s 90 percent of cost.” For a startup to build a business around a yeast that cranks out a pharmaceutical, for example, it must manage massive tanks full of microbes. Reducing the cost of the initial DNA manufacturing would only give the company pocket money, Carlson says: “Hooray, they get to buy beer, or more pizza on Friday.”
没有评论:
发表评论