2023年11月17日星期五

ug标注图纸的快捷键 | ug出图纸怎么自动标注

 

ug标注图纸的快捷键 | ug出图纸怎么自动标注

ug标注图纸的快捷键 | ug出图纸怎么自动标注

1. ug出图纸怎么自动标注

1、打开UG软件,在菜单栏选择“文件”,选择打开 “实用工具”的“用户默认设置”。

2、在弹出的窗口中,下拉滚动条,找到草图,选择自动判断的约束和尺寸。

3、去掉“在设计应用程序连续自动标注”的对勾,点击确定按钮。

4、重新进入草图绘图,已经没有连续自动标注尺寸了,后面绘制图形自行标注尺寸即可。

2. ug图纸自动标注尺寸

点“编辑”选“注释”再选“文本”然后点你要修改的标注. 出现文本对话框,把里面的数字删除,输入你要的数字。 直接编辑图纸大小到A3!调整视图比例到合适,只要不是强行更改过的都不会变的!

3. ug草图自动标注

UG进入草图,点击右下的图标(连续自动标注尺寸),即可关闭。 这些图标可以调用出来的(基于使用习惯),看到最后面有个小三角了吗?点击一下,可以下拉菜单的,找到连续自动标注,然后勾选上即可。

4. UG草图里面的自动标注怎么设置

方法/步骤

1.打开ug10.0。

2.打开有点、线、片体、实体的ug文件

3.在菜单栏里选编辑-显示和隐藏-显示和隐藏,或按快捷键ctrl+w。

4.在出来的显示和隐藏对话框中,加号代表显示,减号代表隐藏。根据你的需求,在相应的点,线,片体,实体所对应的加减号点击即可隐藏和显示。

5.反隐藏功能显示隐藏功能都在同样的菜单目录下。

6.全部显示功能和隐藏显示功能也是同一目菜单目录下

5. ug制图自动符号标注

1.临时修改线型

在制图模块界面,点击首选项----注释,弹出注释首选项

分别对尺寸、直线/箭头、文字、符号等进行设置

2.永久性修改线型

点击文件----实用工具----用户默认设置:

制图----常规---标准-----点击customize standard,进行设置

设置完成后点击右下角Save As进行保存重启UG生效

另一种永久设置方法

打开UG制图模板文件C:\Program Files (x86)\Siemens\NX 8.0\LOCALIZATION\prc\simpl_chinese\startup\model-plain-1-mm-template,按照临时修线型的方式修改后保存即可

6. ug制图能不能自动标注

右键文字,样式里面那不是有字体尺寸吗,把那个值调大调小就可以啦。

7. ug出图纸怎么自动标注尺寸

ug图纸的打印关键是在设置上。这个设置相当的繁琐,而且每个版本都会有所区别,因此很多人不愿用ug进行打印,干脆把它转成AUTOCAD或其它格式进行打印。

另外,ug打印也可以采用打印的外挂(外挂的名称:LPOPEN),这个外挂使用很简单,不用设置ug,适合各版本。只要在ug上出好工程图,然后打开外挂选择图纸就可以直接打印。

8. ug工程制图怎么自动标注

以NX11.0为例,可参考以下步骤快速标注尺寸:

1、打开ug软件生成工程图。

2、点击菜单栏中插入命令

3、选择尺寸选项。

4、选择线性标注。

5、选择需要标注尺寸的对象。

6、连续标注尺寸。

7、标注完成后点击关闭即可。

扩展资料:

UG是当今较为流行的一种模具设计软件,主要是因为其功能强大。

模具设计的流程很多,其中分模就是其中关建的一步。分模有两种:一种是自动的,另一种是手动的,当然也不是纯粹的手动,也要用到自动分模工具条的命令,即模具导向。

9. ug工程图如何自动标注

在制图环境下,按d就可以标注了,也可以自己定制快捷键。


2023年11月15日星期三

Slider

 

Things you need to know about how to design of mold slide.

Posted on : March 11, 2022 By  GREFEE


Undercuts treatment

Movement principles & design elements of diagonal bracing pin block

Undercuts treatment uses the mold opening movement and ejection force to causes the tendency of relatively motion between angle pin and slider. There are two movements to make it separate from the undercut : mold opening direction & horizontal direction. As the below pic shows:

in the pic:

β=α+2°~3°(avoid any parts contacts or blocks when group molding & reduce friction when opening molds)

α≦25°(α is the obliquity of taper pin)

L=1.5D (L is matching length)

S=T+2~3mm(S, the distance of horizontal movement of slider, T, the end product undercut

S=(L1xsina-δ)/cosα(δ – the space between taper pin and slider, normally is 0.5MM,L1is the taper pin vertical distance inside the slider)

Clamping methods & applicable situations of diagonal bracing tip

DiagramDescription
diagonal bracingSuits for situations, like thin mold and the top clamping plate and cavity plate are closed. The contact area is long and stable.
diagonal bracing1Suits for situations, like thick mold, large mold cavity.
applicable to two plate mold/three plate mold.The contact area L≧1.5D(D is diameter of diagonal bracing tip), good stability
diagonal bracing2Suits for thick mold
applicable to two plate mold/three plate mold  
contact area L≧1.5D(D is diameter of angle pin), poor stability, hard to processing
diagonal bracing3Suits for situations, like thin mold and the top plate mold and cavity plate can be separated.
Long contact area, good stability

Movement principles & design elements of pulling block

The mold opening movement of molding machine causes a tendency of relatively motion between pulling blocks and sliders.

See pic below:

in the pic above:

β=α≦25° (α – the obliquity of pulling block)

H1≧1.5W   (H1-matching distance)

S=T+2~3mm (S-distance of horizontal movement of slider, T- end product undercut)

S=H*sinα-δ/cosα(δ – the space between diagonal bracing tip and sliders, normally is 0.5MM,L1is the vertical distance of

H-vertical distance of pulling block inside the slider)

C- motion stopping surface so the pulling block form doesn’t need motion-stoping surface(no space)

Slider locking & fixing solutions

There is a huge pressure during the molding machine injection process. To avoid affecting the side and appearance(eg. burrs) of end products, we should keep the slider and core unmoved when molding machine injection. So the slider should use locking fixed method to keep it stay. normally, this part is motion-stoping block or heel.

Some common locking methods:

DiagramDescriptionDiagramDescription
diagonal bracing4The sliders are pieced together, normally used for standard products. Normally used standard products, check standard parts catalogue. Good structure and hardness.
Applicable to situations needing strong locking force.
diagonal bracing5Use insert mode to lock.
Applicable to wide sliders.
diagonal bracing6Use integrated locking mode. Good rigidity and structure. Hard to processing. Short Demolding distance. Applicable to small moldsdiagonal bracing7Use insert mode
Applicable to  wide sliders
diagonal bracing8Pulling or stopping
Poor stability
Applicable to  situations of small slider space
diagonal bracing9Are pieced together
Good rigidity
Applicable to situations of large space

Fixed methods of slider

The slider will move a certain distance in mold opening. One way to make the slider return back smoothly is to use equipment to fix it and it should be flexible and stable so that the slider will stay at where it should be. Some exceptional situations do not need fixed equipments, like left to right slider, so it is suggested to apply a fixed equipment.

 Equipment for fixing: diagramDescription
diagonal bracing10Fixing slider with spring screw, the strength of spring is 1.5-2 times the weight of slider. Applicable to upward or lateral core pulling.
diagonal bracing11Fixed by spring steel ball. Normally for small sliders for lateral core pulling.
diagonal bracing12Fixed by spring screw and guard. Strength of spring is 1.5-2 times the weight of slider. Applicable to upward and lateral core pulling.  
diagonal bracing13Fixed by spring guard, Strength of spring is 1.5-2 times the weight of slider. Applicable to big slider, upward and lateral core pulling.

Connecting method of slide insert

How slider head insert connected is controlled by end product. Different end products have different connecting methods.

The slider head insert connected methods details:

DiagramDescriptionDiagramDescription
diagonal bracing14Integrated structure
Applicable to situations of large cores, good strength.
diagonal bracing15Fixed by screw.
Applicable to situations of cores, round, or cores are small.
diagonal bracing16Fixed by screw.
Applicable to situations of square cores/small or medium cores
diagonal bracing17Fixed by screw.
Applicable to situations of square cores/small or medium cores

Guide form of sliding block

In the slide guiding, the slider must be smooth and stable so that no stutters or beats, which will affect the aspects, like quality and service life of mold. (Link for the specifications of platen)

The common sliding guide forms are shown in the figure below.

DiagramDescriptionDiagramDescription
diagonal bracing18Integrated manufacturing  mode, hard to manufacture, applicable to small mold manufacturing.diagonal bracing19Clamping plate ¢ral rail mode.
Applicable to situations of long slider and high cavity temperate.
diagonal bracing20Rectangle platen. Easy to manufacture. Fine strength, wide range of application, the specifications of platen is on standard parts list.diagonal bracing21“T” groove inside the slider.
Applicable to situations of small space, like slide inside the slider.
diagonal bracing22Applied “7” shaped clamping plate. Easy to manufacture, good strength. normally fixing with pinhole together.  diagonal bracing23Inserted “T” groove, good stability, hard to manufacture.

Calculation of tilt slider index

Due to the undercut surface of the end product is tilt, so the move direction of slider should follow the direction of end products’ undercut surface, otherwise it will cause damages when pulling the end product.

When the angle situation between the slider core pulling and the parting surface is called the slider pulling direction moving-die.

Shown as pic:

Situation when the angle between slide core pulling direction and parting surface is slider  pulling direction fixed-die.

Shown as below:

master mold runner slider

application features:

Undercuts forming  on the side of master mold

Marks are allowed on the appearance

Medium slider forming area

Shown as below:

Undercut forming on the side of master mold. No marks allowed on appearance. Need to switch to master mold runner slider.

Master mold tunnel block shown as below:

gst mold opening:

second mold opening:

second mold  Designing tips

a. Thickness of top clamping plate H2≧1.5D (D – diameter of large tie rod; hyperlink of large tie rod diameter calculation, three play mold large tie rod calculation; H2- thickness of top clamping plate).

b. Depth of pulling block inserted on the top clamping plate H≧2/3H2

c. There should has taper on SPRUE BUSHING head to fit for clamping and should be on the top clamping plate to avoid brush nozzle on the molding machine separating from SPRUE BUSHING and then result in brush, which is inconvenient to take out and affects next injection.

d.when pulling block inside the cavity plate, should reduce material.

e.The wearable plate should be 0.5mm higher than master mold plate to protect the taste mold plate and support the support pulling block to prevent it from distorting due to the external force.

f. Small pull rod limit stroke: S≦2/3H1 assist with mold clamping. (H1 – height of the slider)

g. It is best to have fixed block on the front of pole, easy to adjust and processing, consist three point bearing, increase the strength of pulling block.

h.To make the wearable block assemble smoothly,  E point should on the right of D point. Shown as below:

I. When assembling slide base and pulling block, need to notice about the relationship between size B and B1, it shoulbe B>B1, while in order to  assemble  smoothly, can also dig through the rear mold located after the slide base.

Dos and don’ts & calculation formula of double “T” groove

Shown as above:

S3=H*tgγ;   

(H – the decreased height of slide block which is the small pull rod stroke; γ – the angle of pulling block)

S2=δ2*cosγ;   

(δ2 – the space between pulling block and slide block, normally is 0.5mm)

S=S3-S2=H*tgγ-δ2*cosγ=(H*sinγ-δ2)/cosγ; 

 (S — horizontal moving distance of slide block)

S4=δ1/cosα;  

(δ1 – slider insert and space between sliders;α -tilt angle of slider insert)

S1=(H*sinβ-δ1)/sin(α+β); 

(β – space between grooves,normally is 0.5mm;S1- distance of slider insert out from the undercut)

Dos and donts:

a. Assemble requirements: assemble the slider insert and inclined insert hole, it should notice the relationship between the size A and A1, should be A>A1.

b. Double “T” groove tolerance, shown as below:

Case of Assemble matters

Die sketch

pic above :

Slide insert can be put inside the core insert without problems, required S1>S or open the core plate.

  β=α+2°~3° (easy to open mold and reduce scratches)

H≧1.5D    H is diagonal brace pin matching length; D is diameter of diagonal brace pin)

Double “T” groove structure model:

Double “T” groove structure model:

Cavity explosive slider

applicable situations of explosive slide block

Generally, forming on the cavity side and large slider forming area, especially using slider when the cavity side is very deep.

Explosive slider as blow pic shows:

mold opening state:

Stroke calculation:

Shown in the pic below:

S=L*sinβ  (β- “T” groove angle;L stroke along the “T” groove direction; S –  distance of slide block horizontal movement)

H=L*cosβ  (H distance of slide block vertical distance)

Design tips and notices of explosive slide block

Shown as the pic on the right:

a.bottom wearable plate needs bevel, reduce loss between slide block and core plate, normally takes 1.5˚~3˚, assemble location be at the 3 / 4 of the center of gravity of the slide block.

  b.S1>S (S – distance of slide block horizontal movement)

c. the wearable plate on the back of slide block and should be 0.5 mm higher than slide block’s back.

e. The angle between block and grab hook γ> the wearable plate obliquity.

  f.β=α (β is “T” groove angle;α is lmit rod angle)

g. T – block should be longer and 10 mm higher than cavity plate.

h. Slide block head should have die screw, easy to group the mold. Need to take down when testing mold

i. Lock T-block screw should be vertical to T block.

j. The spring at the head, should calculate the weight of slide block.

k. The back of the slide block should be tool setting plane.

l. Both flanks of slide block should have limit groove.

m. The slide block head must have datum plane to provide convenience for grouping mold. The processing base level is normally over 8mm.

n. Explosive slide block must have shoulder (wings for fixing) to provide convenience for grouping mold and also a base level is necessary, cannot reduce the material)

The assemble location depends on the location of the gravity of slide block.

Dos and don’ts of Extra deep explosive slide block

the guide rod should assemble from the cavity plate

a、Cavity plate should be  embedded into the core plate,avoid the cavity plate outward lift, enhance the mold strength

b.wearable plates needed at the protruding side of cavity plate, avoid scratches, easy to adjust.

c. Other precautions are the same as above

Place ejector pin inside slider

Generally, for thick and deep products’ wall, the side of the wall has many core pulling holes. The core pulling force is strong, so when moving the slide block, the product might be distorted or scratched. To avoid these happening, we need to place the ejector pin inside the slide block to stop the distortion or scratches.

A. Place ejector pin inside slide block (example 1)

B. Two common ways to place the ejector pin inside slide block, shown as below:

 Delay slider

1. The outside product pulling force is strong, avoid distortion.

2. Use delay slider to operate forced demolding.

The pic below is water pipe and water pipe delay diagram:

1st mold

 Finishing state after 2nd mold opening

oblique slider

1. Application range of oblique slider Normally applied in the products with slider structure, at the same time, along the slider’s direction, the end product also has undercut, which indicates that we can apply oblique slider.

note:

Pic on the right is typical case of oblique slider

2. Oblique slider diagram:

3.internal slider

(1) use boss form (seen as below)

Use the form of diagonal brace pin (as shown below)

In the figure above

S1 = S + 1mm above(S, undercut distance;S1 distance of slider moving

S2=S1/cosβ         (S2, horizontal distance of slider;β obliquity of slider)

S2=S3=(H1*sinα-0.5)/cosα  (H1, relative vertical height; obliquity of diagonal brace pin       ≦25)° 

γ=α+2°~3°

H≧1.5D    (D, diameter of diagonal brace pin; H, matching distance of  diagonal brace pin)

*Detailed dimension calculation hyperlink oblique slider calculation*

Calculation of core pulling force & strength checking

1. Calculation of core pulling force

After cooling, the plastic will be narrowing and shortening, including the die core and the other parts (like oblique tip, slider, insert etc)Therefore, we must consider the enclosed strength that end product impact on slider, stress state, see pic on the right

note:

F=F4*cosα-F3cosα=(F4-F3)*cosα

 F—core pulling force(N);

F3—F2 lateral component(N)

F4— core pulling resistance(N);

α—obliquity of de-molding. as α is normally low, so cosα=1

That is    F=F4-F3

But   F2=F1-cosα

F3=F2tgα=F1cosα*tgα=F1*sinα

F4=F2*μ=μ-F1cosα

So  F=F4-F3=μ*F1cosα-F1sinα=F1(μcosα-sinα)

F1——the enclosed strength that plastic on core (N)

F2—perpendicular to positive pressure on the surface of core(N)

μ—the friction coefficient between palstic and steel, normally is around 0.2

While F1=CLF.

The average circumference of core cross-section part which enclosed by plastic.

L—the distance of core part enclosed by plastic (CM)

F0—enclosed strength of unit area, normally 7.85~11.77MPA

Namely F=100CLF0(μcosα-sinα)  (N)

2. Diagonal bracing tip diameter checking:

The diameter of diagonal bracing tip is affected by many factors, like obliquity, length, and required de-molding distance. Thus, in designing, some parameters should be adjusted and matched to obtain the best result to make sure the slider to move smoothly. Calculation formula:

Note:P – maximum bending force on taper pin

L— bending moment

P1—core pulling resistance

H— distance from core pulling hole center to point A

α°—obliquity of taper pin

P2—mold opening force

From the pic we know:

P=P1/cosα (KN)

M curve=PL (KN)

Which is    M curve≦[σcurve]*W   (KN)

namely   PL=[σ curve]*W  (KN)

W—bending section coefficient

[σ curve]—permissible bending stress(for carbon steel – 13.7KN/CM2 (137MPA)

M curve—maximum moment on taper pin

Namely:     W=(πd4/64)/(D/2)= πd3/32=0.1d3

0.1d3=pL/[σ]=PH/([σ]cosα)

0.1d3=pL/[σ]curve=PH/([σ]curve cosα)

D=3√(ph/0.1[σ]cosα  (cm)

D=3√(ph/0.1[σ] curve cosα  (cm)

3.size of pulling block section checking

The size of pulling block section checking is as same as the calculation of diagonal bracing tip. It only needs to alter the last step. Formula:

W=bh2/b

When     b=2/3h,    W=h3/9

h3/9=pL/[σ] curve =PH/([σ] curve cosα)

H=3√9PH/([σ] curve cosα)   (cm)

When     b=h,       W=H3/b]

H=3√(6ph/[σ] curve*cosα)  (cm)

h—long side of puling block section(cm)

b—short side of pulling block section(cm)